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超声内镜人工智能系统临床应用专家共识
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【提要】　超声内镜是诊断肝胆胰系统病灶、黏膜下肿瘤等消化系统疾病、判断胃肠道早期癌浸润

深度的有效工具。人工智能技术在超声内镜的质量控制和辅助诊断中起到了重要作用，但目前国内

外尚无超声内镜人工智能系统临床应用的相关共识。2024年中华医学会消化内镜学分会大数据协

作组组织全国领域内权威专家讨论，结合国内外最新循证医学证据，形成超声内镜人工智能系统临床

应用专家共识，旨在为内镜医师应用超声内镜人工智能提供全面合理的决策证据。本共识包括人工

智能在肝胆胰系统标准站点识别、消化道早期癌浸润深度预测、黏膜下肿瘤病理分型、肝胆胰异常病

灶识别及病理分型等方面的 9条推荐意见陈述。
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【Summary】 Endoscopic ultrasonography is an effective tool for the diagnosis of digestive diseases 
including hepatobiliary and pancreatic lesions, submucosal tumors, and judgement of the depth of invasion 
of early gastrointestinal cancer. Artificial intelligence technology plays an important role in the quality 
control and auxiliary diagnosis of endoscopic ultrasonography, but there is no consensus on the application of 
artificial intelligence system to endoscopic ultrasonography at home and abroad. In 2024, Big Data 
Collaboration Group, Digestive Endoscopy Branch of Chinese Medical Association organized discussions 
among authoritative experts in the field across the country and formulated expert consensus on the clinical 
application of endoscopic ultrasonography artificial intelligence system based on the latest evidence-based 
medical evidence at home and abroad, aiming to provide endoscopists with comprehensive and reasonable 
decision-making evidence for the application of endoscopic ultrasonography artificial intelligence. This 
consensus included 9 recommendation statements regarding artificial intelligence in the identification of 
standard sites of the hepatobiliary and pancreatic system, prediction of infiltration depth of early digestive 
cancer, pathological classification of submucosal tumors and identification and pathological classification of 
abnormal lesions of the hepatobiliary and pancreatic systems.

【Key words】 Artificial intelligence; Endoscopic ultrasonography; China; Expert consensus
一、前言

超声内镜（endoscopic ultrasonography， EUS）在诊断和

治疗消化系统疾病方面具有重要意义，尤其在肝胆胰系统

病灶及消化道黏膜下肿瘤（submucosal tumor，SMT）的诊断、

胃肠道早期癌浸润深度的评估、纵隔病变的活检等方面具

有独特优势［1‑4］。利用 EUS 评估此类疾病对选择合适的治
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疗方式及改善患者预后至关重要。

然而，传统 EUS检查依赖于操作医师的经验和技能水

平，在图像识别能力和诊断一致性方面存在较大差异，导致

病变漏诊率和误诊率居高不下［5］。此外，与胃镜或结肠镜

检查相比，EUS检查对内镜医师的熟练度要求更高，EUS专

家通常集中在高级医疗中心，大部分地区和中心缺乏足够

的EUS经验，从而导致病变检出不足或误诊；即使是EUS专

家，疲劳和粗心有时也会导致病变漏诊。在发达国家，EUS
是成熟的技术［6］。然而，许多发展中国家的 EUS 服务相当

短缺，在一项对南亚和东南亚内镜医师的调查中，设备成本

过高和缺乏操作 EUS 的内镜医师是 EUS 发展的主要障

碍［7‑8］。EUS在中国也是一种相对较新、不断新兴的技术，截至

2019年，中国能够开展EUS的医院有 1 000余家，能够操作

EUS的内镜医师仅有4 000余名，EUS技术的基础相对薄弱［9］。

为了解决这一问题，人工智能（artificial intelligence， 
AI）技术被引入到EUS领域［10‑11］。AI技术，特别是深度学习

和图像识别算法，能够从大量的医学图像数据中学习和提

取特征，提高EUS影像的分析和诊断准确性。近年来，国内

外学者在EUS AI辅助诊断方面取得了显著进展，AI技术在

质量控制、病变识别和诊断等方面表现出高效性和准确性。

多项临床试验进一步验证了AI辅助EUS在提高诊断效率、

减少漏诊率和降低医师操作负担等方面的潜力。本共识旨

在综合现有研究证据，为临床医师在应用EUS AI辅助模型

时提供决策参考。本共识并非强制性标准，无法涵盖或解

决所有技术相关的临床问题。建议临床医师在面对具体患

者时，应充分了解目前能够获取的最佳临床证据，结合患者

病情和治疗意愿，根据自己的专业知识、临床经验和可获得

的医疗资源，制定临床决策。

本共识基于 PICO（participants，interventions，outcomes，

comparisons）原则提出陈述意见［12］，参考 GRADE（grading of 
recommendations，assessment，development， and evaluation）系

统评估证据质量（表 1）和推荐强度（表 2）［13］，采用改良

Delphi 方法由专家投票表决达成共识：①完全同意；②同

意，有较小保留意见；③同意，有较大保留意见；④不同

意。投票表决意见中①+②比例>80% 属于达成共识，共

识水平以表决意见中的①+②比例表示。共识陈述汇总见

表3。
表1 证据质量分级标准

证据质量

高等质量

中等质量

低等质量

很低等质量

等级

A

B

C

D

定义

非常确信估计的效应值接近真实效
应值，进一步研究也不可能改变其
可信度

对估计的效应值确信度中等，其有
可能接近真实效应值，进一步研究
有可能改变其可信度

对估计的效应值确信度有限，其与
真实效应值可能大不相同，进一步
研究极有可能改变其可信度

对估计的效应值几乎没有信心，其
与真实效应值很可能完全不同，对
其的任何估计都很不确定

表3 超声内镜人工智能系统临床应用专家共识陈述汇总

推荐意见

一、AI辅助EUS质量控制

陈述1：对于消化道、纵隔、胆道、胰腺EUS扫查，推荐AI辅助实时监测标准图像作为质量控制工具

二、AI辅助诊断SMT
陈述2：对于SMT，推荐使用AI辅助EUS判别病变起源层次

陈述3：对于SMT，推荐使用AI辅助EUS预测病变的组织类型

三、AI辅助判别早期胃癌浸润深度

陈述4：对于早期胃癌病变，可使用AI辅助EUS判别病变浸润深度

四、AI辅助诊断肝胆胰病变

陈述5：推荐在EUS检查中，使用AI辅助检出胰腺病变，预测病变病理性质

陈述6：推荐在EUS检查中，使用AI辅助检出肝脏病变，预测病变病理性质

陈述7：推荐在EUS检查中，使用AI辅助检出胆道系统病变，预测病变病理性质

五、AI辅助ROSE
陈述8：EUS细针穿刺活检病变后，如无病理医师现场评估，且需ROSE，推荐AI辅助内镜医师判断ROSE结果

六、使用算法提升AI模型的表现和使用效果

陈述9：推荐使用算法提升AI模型的表现和使用效果

证据
质量

A

B
C

C

A
C
C

B

C

推荐
强度

强

强

弱

弱

强

弱

弱

强

弱

共识水平
（%）

100.00

100.00
72.22

77.78

100.00
83.33
83.33

100.00

100.00
注：AI指人工智能；EUS指超声内镜；SMT指黏膜下肿瘤；ROSE指细胞病理学快速现场评估

表2 推荐强度分级标准

推荐强度

强

弱

等级

1

2

定义

明确显示干预措施利大于弊或者
弊大于利，在大多数情况下适用于
大多数患者

利弊不确定，或无论质量高低证据
均显示利弊适当，适用于很多患
者，但根据患者价值观与偏好性会
有差异
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二、EUS AI系统功能

（一）AI辅助EUS质量控制

【【陈述陈述 1】】对于消化道对于消化道、、纵隔纵隔、、胆道胆道、、胰腺胰腺EUS扫查扫查，，推推

荐荐AI辅助实时监测标准图像作为质量控制工具辅助实时监测标准图像作为质量控制工具。。（证据质

量：A；推荐强度：强；共识水平：100.00%）

EUS是消化道内镜重要的分类之一，EUS对纵隔、胆道

和胰腺疾病的检查有较高的诊断准确率，对纵隔的扫查、纵

隔淋巴结病理活检、中心肺叶病变活检有独特的优势［14‑15］；

对胆道的检查准确率最接近金标准——内镜逆行胰胆管造

影［16‑17］；对胰腺小病灶的检查灵敏度最高［18］。EUS检查过程

中，全面的扫查是保证检查质量的关键［19］。然而由于 EUS
学习曲线陡峭、内镜医师能力参差不齐、缺乏规范扫查意识

等［20‑21］，EUS检查过程中结构漏扫率较高［22］。并且由于临床

诊疗环节复杂、诊疗任务繁重，缺乏经济有效的质量控制方

式，目前很难对EUS检查情况进行严格监测。

Yao 等［23］使用 33 010 张图像训练了纵隔站点分类模

型，将标准扫描分为 7个站点。模型在 151个视频的内部验

证集和 1 212张图像的外部测试集中的分类准确率分别为

90.49%和 89.85%。Yao等［24］使用了 10 681张图像构建了胆

管智能 EUS 标准站识别及导航系统，系统将胆管分为 4 个

标准站点，包括胃底、胃体、十二指肠球部和十二指肠降部，

在包含 120 张图像的验证集中，系统识别各站点的准确率

达到了 90.0%，3 位 EUS 专家识别的准确率分别为 90.0%、

88.9%和 88.3%，系统与专家的准确率相当。黄丽等［25］使用

3万余张超声内镜图像构建胆管扫查的标准图像分站模型，

将胆管扫查分为肝窗、胃窗、球窗和降窗，在 110 张图像的

测试集中，模型分站的准确率为 89.09%，与 2位专家水平接

近（准确率分别为92.73%和90.00%）。

Zhang 等［26］使用 19 486 张图像构建的系统将胰腺 EUS
扫查分为 6 个标准站点，并且系统可以在视野中分割各个

站点的范围，在视频测试集中，模型分类站点的准确率达到

了 90.0%，分割血管和胰腺的 Dice值分别为 0.77和 0.81，模
型的表现与专家相当。随后Tian等［27］构建了分站更为详尽

的胆胰系统EUS标准解剖部位识别系统，将胆胰分为 14个

标准扫查站点，与 Zhang等［26］构建的系统相比，该系统新增

了肝静脉和门静脉的 3 个站点，在测试集中系统对各个站

点的识别准确率为 92.1%~100.0%。Wu等［28］进行了一项单

中心随机对照临床试验，用于前瞻性验证 EUS标准站识别

及导航系统（EUS‑IREAD），本系统可识别 EUS 检查中的

8个标准站点和 24个解剖结构，研究共纳入 290例怀疑胆胰

疾病的患者，对照组内镜医师按照常规流程行EUS检查，实

验组内镜医师在 EUS 标准站识别及导航系统的辅助下行

EUS检查，结果显示，应用EUS标准站识别及导航系统可以

降低标准站点漏扫率 ［4.47% 比 14.27%，-9.8%（95%CI：

-12.2%~-7.5%），P<0.000 1］和重要解剖结构漏扫率［6.2%
比 17.39%，-11.2%（95%CI：-12.7%~-9.7%），P<0.000 1］，有

效提升了EUS的检查质量。卢姿桦等［29］使用 205例患者的

1 万余张 EUS 图像构建胰腺 EUS 质量控制系统，在包含

150张图像的测试集中，模型分类胰腺 6个标准站的准确率

为 90.0%，分割胰腺和血管的 Dice值分别为 0.740和 0.789，
与专家的一致性较好（Kappa系数0.799~0.840）。

（二）AI辅助诊断SMT
【【陈述陈述 2】】对于对于 SMT，，推荐使用推荐使用AI辅助辅助 EUS判别病变判别病变

起源层次起源层次。。（证据质量：B；推荐强度：强；共识水平：

100.00%）

【【陈述陈述 3】】对于对于 SMT，，推荐使用推荐使用AI辅助辅助 EUS预测病变预测病变

的组织类型的组织类型。。（证据质量：C；推荐强度：弱；共识水平：

72.22%）

SMT 指起源于黏膜肌层以下各层的隆起性病变，国外

文献中也常使用胃肠道上皮下肿瘤（subepithelial lesions，
SELs）这一术语。SMT 通常在常规上消化道内镜检查中被

偶 然 发 现 ，组 织 学 类 型 多 样 ，以 平 滑 肌 瘤 、间 质 瘤

（gastrointestinal stromal tumor，GIST）和异位胰腺较为常

见［30］。准确识别 SMT的起源层次对于选择合适的内镜治疗

方式至关重要。对于源自黏膜和黏膜下层的肿瘤，可选择

的手术方式包括内镜黏膜切除术（endoscopic mucosal 
resection，EMR）、套扎装置辅助EMR、透明帽辅助EMR和内

镜黏膜下剥离术（endoscopic submucosal dissection，ESD）；

而起源于固有肌层的肿瘤，适用的手术则包括内镜黏膜下

挖除术、ESD、内镜全层切除术和内镜黏膜下隧道剥离

术［31‑32］。EUS是能够区分消化道不同组织层次的成像技术，

然而以往研究指出内镜医师使用EUS辨别组织层次的一致

性不佳，准确率为 59%~94%，严重影响患者的诊断和治

疗［33］。

Li等［34］开发了一个AI模型，用于在EUS下确定 SMT的

起源层次，训练数据包括来自 201例患者的 2 721张EUS图

像。系统包含 3 个深度卷积神经网络（deep convolutional 
neural network， DCNN），DCNN1用于分割病变，DCNN2用于

分割黏膜层次，DCNN3用于分类黏膜起源层次。该系统在

视频测试中准确率为 80.00%。此外，人机比较中，系统的

分类准确率达到 90.00%，与EUS专家的水平相当（90.0%比

88.3%），展示了该系统在临床应用中的潜力。

通常长径<20 mm 的 SMT 为良性病变，但仍有 15% 的

SMT为恶性病变，尤其是来源于间叶组织的GIST，往往因具

有恶性潜能而需要治疗［35‑36］。因此，GIST与其他 SMT，尤其

是与特征相似的平滑肌瘤的准确鉴别，对患者治疗方式的

选择、预后的判断十分重要［37］。EUS是目前对长径<20 mm
的 SMT的起源层次、内部回声边界和尺寸最有价值的评估

方法，对于各种组织类型 SMT的鉴别诊断与治疗方法的选

择都有重要指导价值［38‑39］。但 EUS 图像识别难度高，不同

医师之间主观诊断一致性差，影响 SMT患者的诊治。虽然

组织病理学是准确诊断的“金标准”，但使用 EUS引导细针

穿刺抽吸术（EUS‑guioled fine needle aspiration，EUS‑FNA）
或黏膜活检的诊断准确率仍然很低［40‑41］。因此，利用 AI辅
助EUS预测SMT组织类型具有重要意义。

Dong 等［35］使用 1 101 例 SMT 患者的 5 419 张 EUS 图像
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开发了一个实时AI辅助EUS诊断系统，该系统可以在临床

环境中自动识别、定位和诊断 SMT，在内部验证和多中心外

部评估中，系统诊断GIST和平滑肌瘤的准确率分别达到了

93.1% 和 91.7%，在实际应用中，AI辅助 EUS 诊断系统同样

表现出色，诊断 GIST 和平滑肌瘤的曲线下面积（area under 
curve，AUC）分别为 0.865 和 0.864，显著优于经验丰富的内

镜医师（0.865 比 0.698，P=0.010；0.864 比 0.695，P=0.010）。

Hirai 等［ 42 ］收 集 来 自 12 家 医 院 631 例 SMT 患 者 的

16 110张EUS图像用于开发 SMT分类模型，该AI系统在五

分类区分GIST、平滑肌瘤、神经鞘瘤、神经内分泌肿瘤和异

位胰腺中的准确率为 86.1%，区分 GIST 和非 GIST 的灵敏

度、特异度和准确率分别为 98.8%、67.6% 和 89.3%，显著优

于所有内镜医师。Oh等［43］使用了来自 114例患者的 376张

图 像 训 练 卷 积 神 经 网 络（convolutional neural networks， 
CNN）模型，用于区分 GIST 和平滑肌瘤，在 170张图像的测

试集中，模型分类的 AUC 为 0.923。Minoda 等［44］在 60 例患

者的EUS图片中比较EUS AI与专家区分GIST和非GIST的

表现，EUS AI 的准确率、灵敏度和特异度分别为 86.3%、

86.3%和 62.5%，专家的数据分别为 73.3%、68.2%和 87.5%，

EUS AI的灵敏度和准确率均高于 EUS专家，该研究进一步

分析病变大小与EUS AI诊断准确率之间的关系，发现随着

病变增大，EUS AI 的准确率逐渐升高。Kim 等［45］使用

905例患者的EUS图像训练CNN系统，用于分类GIST、平滑

肌瘤和神经鞘瘤，在 212例患者的测试集中，CNN系统分类

GIST、平滑肌瘤和神经鞘瘤的准确率为 75.5%，与 3 位熟练

的内镜医师相当。张晨霞等［46］使用 2 000余张 EUS图像训

练胃肠道间质瘤与平滑肌瘤分类模型，模型在 30张图像的

测试集中分类准确率为 86.7%，显著优于 4位内镜医师（准

确率为 53.3%~60.0%），与另外 2位内镜医师相当（准确率分

别为 73.3%和 76.7%）。郭康丽等［47］使用 113张EUS图像训

练的 CNN模型区分 GIST和平滑肌瘤的准确率可达 89.66%
（26/29）（95%CI：78.57%~100.00%）。 Tanaka 等［48］ 使 用

SiamMask 算 法 跟 踪 对 比 增 强 谐 波 超 声 内 镜

（contrast‑enhanced harmonic endoscopic ultrasound， CH‑EUS）
视频中每帧图像中的目标区域，进而使用AI区分GIST和良

性 SMT，在 53例患者、每例患者 200帧图像中识别的 SMT区

域与内镜医师标记的金标准范围的一致率为 96%，AI区分

GIST 和良性 SMT 的灵敏度、特异度和准确率分别为 90.5%
（95%CI：84.4%~92.4%）、90.9%（95%CI：67.9%~98.3%）、

90.6%（95%CI：81.0%~93.6%），内镜医师的数据分别为

90.5%（95%CI：84.2%~93.7%）、81.8%（95%CI：57.8%~
94.2%）、88.7%（95%CI：78.7%~93.8%），AI与内镜医师的表

现接近。

一些 GIST 具有恶性潜能，因此应根据风险分类预测

GIST 的进展风险，美军病理研究所（Armed Forces Institute 
of Pathology，AFIP）提出应根据手术后病理结果预测 GIST
的恶性潜能，分析因素包括 GIST 的大小、有丝分裂指数和

位置，来预测 GIST 复发或转移的风险［49‑50］。Lu 等［51］使用

1 320 张 EUS 图像开发两种 AI 风险分级模型，用于预测

GIST的恶性潜能，模型 1是四类风险预测模型，包括极低风

险、低风险、中风险和高风险四类，模型 2 是两类风险预测

模型，包括极低风险和非极低风险两类，这些模型在外部验

证中表现优异，四类风险模型的总体准确率为 74.50%，而

专门预测极低风险GIST的两类风险模型准确率为 86.25%。

Seven等［52］使用 55例患者的EUS图像构建深度学习模型预

测GIST的恶性潜能，图像中的GIST均经手术切除证实病理

结果，分为极低风险、低风险、中风险和高风险，在前瞻性收

集 15例患者的验证队列中，模型区分四类风险的准确率为

66%，而将患者分为低风险（极低风险和低风险）和高风险

（中风险和高风险）时，模型分类的准确率提升到了 99%。

Liu 等［53］回顾性收集了来自 18 家医疗机构 914 例患者的

1 824张EUS图像，并使用三重归一化的深度学习框架处理

图像、训练模型，将多中心图像的强度、大小和空间分辨率

统一，然后将年龄、性别和归一化后的肿瘤大小用于训练模

型，预测 GIST的恶性潜能，在 380张 EUS图像的测试集中，

模型的准确率为 0.834（95%CI：0.772~0.885），灵敏度为

0.844（95%CI：0.672~0.947），特异度为 0.832（95%CI：0.762~
0.888）。以上研究表明AI辅助的EUS诊断系统在实际临床

评估中具有提高GIST诊断准确率的潜力，但在临床检查过

程中需首先在EUS图像中识别可疑的 GIST，然后才能预测

其恶性潜能，因此在实际使用时系统的整体准确率可能低

于文献中测试的数据。

（三）AI 辅助判别早期胃癌（early gastric cancer， EGC）
浸润深度

【【陈述陈述 4】】对于对于EGC病变病变，，可使用可使用AI辅助辅助EUS判别病判别病

变浸润深度变浸润深度。。（证据质量：C；推荐强度：弱；共识水平：

77.78%）

EGC 患者的治疗策略主要取决于癌症的浸润深度，准

确预测黏膜下层的浸润深度是改善患者预后并避免过度诊

疗的关键。具体而言，淋巴结转移在黏膜或黏膜下浅层浸

润（距黏膜肌层<500 μm）的 EGC 中很少见，因此 ESD 可以

作为其治疗方法［54］。EUS 可以显示胃壁层次，在鉴别 EGC
和进展期胃癌方面有较高的准确率，目前 EUS已经成为胃

癌局部分期的首选工具［55‑56］。Uema等［57］回顾性连续收集了

420例EGC患者的 5 177张EUS图像，构建了基于深度学习

系统的 AI模型，用于判断 EGC 浸润深度，系统中包含 EGC
图像分割模型、分类模型，进一步在 11 家医疗机构前瞻性

收集 139 例患者的 3 103 张图像，用于验证系统的性能，由

于外部验证集中图像采集系统与内部数据集中采集设备不

同，使用 CycleGAN 方法统一图像风格，最终系统在外部验

证集中对 EGC浸润深度的预测的灵敏度、特异度和准确率

分 别 为 73.1%（95%CI：60.9%~83.2%）、75.0%（95%CI：

63.4%~84.5%）和 74.1%（95%CI：66.0%~81.2%），准确率与

专家相当（74.1%比 75.5%，P=0.88）。有文章指出EGC有溃

疡、EGC位于胃体中上 1/3、大尺寸病变、未分化癌等因素会

导致 EUS T 分期的准确性较低［58‑59］。Kim 等［60］使用决策树
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分析影响 EUS 对 EGC T 分期准确性的影响因素，结果表明

病变大小是影响 T分期最重要的因素，>3 cm的病变 T分期

更容易被高估，对于≤3 cm的病变，分期的准确性更受分化

程度和病变位置的影响，这种相对简单的机器学习方法能

够直接分析出影响临床决策的因素。

（四）AI辅助诊断肝胆胰病变

【【陈述陈述5】】推荐在推荐在EUS检查中检查中，，使用使用AI辅助检出胰腺病辅助检出胰腺病

变变，，预测病变病理性质预测病变病理性质。。（证据质量：A；推荐强度：强；共识

水平：100.00%）

【【陈述陈述6】】推荐在推荐在EUS检查中检查中，，使用使用AI辅助检出肝脏病辅助检出肝脏病

变变，，预测病变病理性质预测病变病理性质。。（证据质量：C；推荐强度：弱；共识

水平：83.33%）

【【陈述陈述7】】推荐在推荐在EUS检查中检查中，，使用使用AI辅助检出胆道系辅助检出胆道系

统病变统病变，，预测病变病理性质预测病变病理性质。。（证据质量：C；推荐强度：弱；

共识水平：83.33%）

胰腺病变不仅包括肿瘤病变，如胰腺导管腺癌

（pancreatic ductal adenocarcinoma， PDAC）、黏液性囊性肿

瘤、浆液性囊性肿瘤、胰腺鳞状细胞癌、腺泡细胞癌、转移性

胰腺癌、神经内分泌癌、神经内分泌肿瘤等，也有一些非肿

瘤性病变，如自身免疫性胰腺炎（autoimmune pancreatitis，
AIP）、慢性胰腺炎［61‑62］。在胰腺病变的早期检出与鉴别诊

断方面，EUS 被认为具有更高的诊断率。Zhang 等［63］利用

108例患者的 EUS图像训练支持向量机模型对 EUS图像进

行评估，用于诊断胰腺癌，在测试集中，支持向量机模型识

别胰腺癌的准确率、灵敏度和特异度分别为 97.89%、

94.32%和 99.45%。Marya等［64］使用四分类深度学习模型用

于实时辅助 EUS鉴别 AIP、PDAC、慢性胰腺炎和正常胰腺，

疾病分类模型的诊断准确率显著高于内镜医师（75.6％比

61.6％，P=0.026），模型与内镜医师的灵敏度分别为 88.2%
和 53.8%。Kuwahara 等［65］使用 933 例患者的 2 万余张图像

训练 DCNN 模型对多种类型的胰腺肿块进行分类，模型能

够识别的肿块类型十分广泛，包括PDAC、胰腺腺鳞癌、腺泡

细胞癌、转移性胰腺肿瘤、神经内分泌癌、神经内分泌肿瘤、

实性假乳头状肿瘤、慢性胰腺炎和AIP，AI模型在测试集中

诊断胰腺癌的准确率为 0.91（95%CI：0.85~0.95），对其余各

疾病的分类敏感度大多在 0.78~1.00之间。

超声造影剂与特定造影成像技术的结合在临床诊断成

像中的应用日益得到认可。对胰腺的研究是 CH‑EUS的一

个新颖且前景广阔的应用领域，该技术可更好地描绘和鉴

别诊断局灶性胰腺肿块［66］，观察到的病灶如果呈现低增强

表现，则更有可能是胰腺癌，而那些具有正常血管结构的病

变，如肿块型慢性胰腺炎，其增强模式通常与周围实质相

似，常表现为等增强或甚至高增强［67‑68］。Tang 等［69］使用

CH‑EUS图像训练了两个模型，模型 1使用 Une++架构训练

而成，用于分割胰腺肿块，模型 2用于分类良性和恶性胰腺

肿块，完成对模型 1 和模型 2 的测试后，构建 CH‑EUS 
MADTER 系统，包括客户端（获取、处理图像，展示预测结

果）和服务器端（传输图像、预测结果），研究者开展前瞻性

随机对照试验，招募 39 例需接受 CH‑EUS 的患者，比较

CH‑EUS MADTER 和内镜医师诊断胰腺肿块的准确率、灵

敏度和特异度等，对照组在操作 FNA 时，前两次没有

CH‑EUS MADTER的辅助，随后两次接受CH‑EUS MADTER
的辅助，CH‑EUS MADTER组前两次在CH‑EUS MADTER辅

助下穿刺，另外两次穿刺没有 CH‑EUS MADTER 的辅助。

金标准是手术组织或 EUS‑FNA 的病检结果，最终 CH‑EUS 
MADTER 诊断胰腺肿块恶性病变的准确率（92.3% 比

87.2%，P<0.05）、灵敏度（92.3% 比 88.5%，P<0.05）和特异度

（92.3%比 84.6%，P<0.05）均显著优于内镜医师。随后研究

者们开展了交叉试验评估系统培训 EUS学员的作用，实验

组学员观看 30 个 EUS 视频和 60 张 AI 标记的图像，对照组

观看 30 个 EUS 视频和 60 张无 AI 标记的图像，学员在视频

测试中记录视频中首次识别胰腺病变的时间点，在图像测

试中描绘病变边界，学员首次测试后洗脱 2周，更换组别学

习，再进行第 2次测试，8名学员在AI训练前分割病变的交

并比为 0.80±0.06，在AI训练后的交并比显著提升，为 0.87±
0.03（P=0.002）；AI 训练前识别胰体尾部病变的时间为

22.75 s±3.47 s，训练后提升至 17.98 s±3.22 s（P<0.000 1），说

明CH‑EUS MADTER能够辅助初级内镜医师更准确地识别

胰腺病变［70］。Cui等［71］回顾性收集 628例患者的病史、放射

学检查结果和EUS图像，用于诊断胰腺肿块，在多个中心前

瞻性测试集中，模型的 AUC 为 0.924~0.976，在 AI辅助内镜

医师的交叉试验中，模型的准确率 ［0.92（95%CI：0.86~
0.96）比 0.77（95%CI：0.68~0.84），P=0.001］和 灵 敏 度

［0.92（95%CI：0.84~0.96）比 0.72（95%CI：0.61~0.82），P=
0.002］都显著优于资深内镜医师。

Kuwahara 等［72］的一项回顾性研究使用 23 例恶性胰腺

导 管 内 乳 头 状 黏 液 瘤（intraductal papillary mucinous 
neoplasm，IPMN）和 27 例良性病变的 EUS 图像训练 CNN 模

型，模型输出范围从 0~1的连续变量，AI值用于预测图片的

恶性概率，当AI值接近 1时，代表模型预测图片的恶性概率

高，结果显示模型识别 IPMN的灵敏度、特异度和准确率分

别为 95.7%、92.6%和 94.0%，且在进一步的多变量分析中发

现，对于 CNN 模型，AI 值≥0.41 是 IPMN 的独立危险因素

（OR=295.16，95% CI：14.13~6 165.75， P<0.001）。Vilas‑Boas
等［73］使用 17例胰腺黏液囊肿和 11例非黏液囊肿的 5 505张

EUS图像训练 CNN模型，在 1 101张图像的测试集中，模型

识别黏液囊肿的准确率、灵敏度和特异度分别为 98.5%、

98.3%和 98.9%，且模型在 6 s内完成了测试，表现出了良好

的性能。

EUS 可以检测 CT 未检测到的小型局灶性肝病变。对

于可能患有原发性肝癌或肝转移性疾病的患者，确定肝脏

局灶性病变的特征是后续优化治疗的关键。Marya等［74］利

用前瞻性收集的 256 例患者的 EUS 图像数据库，用于训练

CNN分析系统，系统可从EUS图像中识别肝脏病变，并区分

良性和恶性病变，结果显示系统在单个静止图像中识别恶
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性局灶性肝病变的灵敏度为 90%、特异度为 71%，对于整个

视频片段，系统识别的灵敏度和特异度分别提高到 100%和

80%，通过遮挡实验验证CNN模型识别图像的区域，发现模

型区分恶性病变与良性病变的准确率为 92.0%。

胆囊息肉样病变包含多种病理类型，非肿瘤性病变包

括炎性息肉、胆固醇息肉和腺肌瘤等，肿瘤性病变包括腺瘤

和腺癌。虽然EUS是诊断胆囊息肉样病变敏感度极高的检

查方法之一，被广泛用于检查胆囊息肉样病变［75］。但胆囊

息肉样病变无法活检，难以通过内镜图像预测病理性质。

内镜医师对胆囊息肉样病变的诊断主观性过强，需要更先

进的技术辅助提升EUS诊断胆囊息肉的准确率。Jang等［76］

使用 1 039 个胆囊息肉样病变的 EUS 图像训练了 3 个 CNN
模型，用于胆囊息肉样病变诊断的三个步骤，即分类胆囊息

肉和胆结石、肿瘤性息肉和非肿瘤性息肉、腺癌和腺瘤性息

肉，在外部验证集中，模型对上述三个分类的准确率分别为

91.6%、77.8%和 76.2%，系统区分肿瘤性息肉和非肿瘤性息

肉的能力介于中等水平内镜医师和专家内镜医师之间。

（五）AI 辅助细胞病理学快速现场评估（rapid on‑site 
evaluation，ROSE）

【【陈述陈述 8】】EUS细针穿刺活检病变后细针穿刺活检病变后，，如无病理医师现如无病理医师现

场评估场评估，，且需且需ROSE，，推荐推荐AI辅助内镜医师判断辅助内镜医师判断ROSE结结

果果。。（证据质量：B；推荐强度：强；共识水平：100.00%）

对局灶性胰腺肿块经常使用 EUS 及 EUS‑FNA 来鉴别

诊断，对于排除胰腺癌具有高达100%的阴性预测值［66］。尽

管如此，EUS‑FNA 识别局灶性胰腺肿块的灵敏度却受伴随

慢性胰腺炎的影响，灵敏度低至 54%~74%［77‑78］。ROSE可以

提高 EUS‑FNA 的诊断率和准确性［79‑80］，但细胞病理学家的

缺乏限制了ROSE的应用，大多数亚洲和欧洲机构都无法使

用 ROSE。因此，开发计算机辅助诊断工具以取代手动

ROSE至关重要。Lin等［81］验证了基于AI的模型在ROSE图

像中分类癌细胞和其他细胞的效果，模型在 3 642张图像的

内部验证数据集及 693张图像的外部验证数据集中分别达

到了 83.4% 和 88.7% 的准确率。Zhang 等［82］开发了一个基

于深度学习的分割系统，用于胰腺肿块的 ROSE，在一项回

顾性多中心验证中，DCNN 系统在内部和外部测试中分别

以 0.929 和 0.899~0.938 的 F1 评分分割染色细胞，DCNN 系

统在内部和多个外部测试中分别以 AUC 为 0.958和 0.948~
0.976分类癌细胞簇的图像。ROSE染色过程中有许多因素

会影响染色质量，如破碎的细胞、污染、纤维和光斑等，这些

问题也让模型分类更加困难。Zhang等［83］训练了能够抵抗

样品噪声的模型，用于在ROSE中分类胰腺癌细胞和正常细

胞，在1 000张ROSE图像的测试集中，模型的诊断准确率优

于其他框架训练的模型（94% 比 89.57%~91.24%）。在

845张ROSE图像的测试集中，研究者们使用另一个多阶混

合框架训练的模型分类胰腺癌细胞和正常细胞的准确率为

97.53%［84］。

（六）使用算法提升AI模型的表现和使用效果

【【陈述陈述 9】】推荐使用算法提升推荐使用算法提升AI模型的表现和使用效模型的表现和使用效

果果。。（证据质量：C；推荐强度：弱；共识水平：100.00%）

以上的研究均表明，使用深度学习进行 EUS图像分类

可以辅助提升内镜医师的检查质量，提高诊断疾病的准确

率等，但深度学习模型需要大量标记训练数据。Bonmati
等［85］使用内镜医师在 12 例患者手术过程中的原始语音记

录标记EUS图像，标记包含 5个解剖部位，即胰腺、门静脉、

胰管、门静脉汇合处和胆管，语音数据和图像数据这两个分

支被连接起来，训练 CNN 模型对 EUS 图像分类，该研究将

此模型与其他只使用语音、只使用图像训练的CNN模型对

比，结果表明使用语音和图像共同训练的模型在测试集中

的准确率最高，为 0.76，而其他模型的准确率仅为 0.20~
0.70。

在临床检查过程中，内镜医师通常先使用白光内镜检

查病变，可区分大部分胃息肉和 SMT，但 SMT包含GIST、平
滑肌瘤和胃异位胰腺等多类病变，虽然大部分 SMT是良性

的，但一部分 GIST 和胃异位胰腺有恶变的可能，需要进一

步检查准确区分表型。EUS 可分辨胃壁各个组织学层次，

能够准确诊断 SMT。以往的研究虽然可单独根据EUS图像

诊断 SMT，但这种分类缺乏白光内镜相关信息，与真实临床

实践不符。因此 Zhu 等［86］收集了 1 366 例诊断为 SMT 患者

的白光内镜图像和 EUS 图像，集成 DCNN 和长短记忆网络

构建模型（MMP‑AI），模型在白光内镜图像和EUS图像中都

可以分类 SMT 的三种病变亚型，即 GIST、平滑肌瘤和胃异

位胰腺，在 352 例患者的测试集中，模型识别平滑肌瘤

（78.5% 比 74.59%）、胃异位胰腺（98.3% 比 98.14%）和 GIST
（83.5%比 74.38%）的准确率均优于来自多家医院的EUS专

家。研究证明 MMP‑AI 诊断 GIST 的准确率优于单独使用

EUS训练的模型（83.5%比 78.5%），可有效融入临床检查流

程中，提升 EUS 检查的准确率［45，86］。Cui 等［71］对比了仅用

EUS 图像训练的胰腺肿块诊断模型与使用病史、放射学结

果和 EUS图像训练的模型在相同测试集中的表现，后者在

3个外部测试集中的AUC都显著高于前者（P<0.001）。

虽然 CNN 模型在 EUS 的各种使用场景（病变检出、病

灶分割、分类预测等）中都有着突破性的表现，但CNN模型

内部的多层网络却难以解读，导致用户无法了解模型分类

的依据［87］。可视化解释不但可以使用户建立对模型的信任

与信心，也可以在培训教学中发挥更大的作用［88］。目前已

有多个研究在构建CNN模型后，使用算法可视化解释模型，

无需重新训练模型，也无需更改模型架构。Nguon 等［89］使

用两家医院 109例患者的EUS图像，用于微调、训练CNN模

型区分黏液性囊性肿瘤和浆液性囊性肿瘤，在随机抽取

60张图片的测试集中，模型识别的准确率、灵敏度和特异度

分别为 82.76%、81.46% 和 84.36%，为了识别模型分类决策

的依据，使用梯度加权类激活映射生成热图，可视化显示图

像中不同区域对决策的影响程度，最终热图表明模型的分

类是根据囊肿区域做出决策的。Cui等［71］向内镜医师们发
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送问卷，以了解他们对于诊断胰腺肿块AI模型的看法。问

卷结果显示专家和资深内镜医师对 AI 模型的排斥率显著

高于新手内镜医师（OR=2.15，95%CI：1.12~4.16，P=0.02），

但在AI模型结果的基础上补充可解释性分析的结果，使他

们对 AI 模型的排斥率与新手内镜医师相当（OR=0.71，
95%CI：0.32~1.58，P=0.40）。

参与共识修订讨论和定稿的专家（按姓名笔画排序）：丁震（中

山大学附属第一医院消化内科），于红刚（武汉大学人民医院消化

内科），王红玲（武汉大学中南医院消化内科），王拥军（首都医科大

学附属北京友谊医院消化内科），冯云路（北京协和医院消化内

科），戎龙（北京大学第一医院消化内科），刘梅（华中科技大学同济

医学院附属同济医院消化内科），刘志国（空军军医大学西京医院

消化内科），刘雪梅（遵义医科大学第一附属医院消化内科），许国

强（浙江大学医学院附属第一医院消化内科），李惠凯（中国人民解

放军总医院消化内科），杨卓（中国人民解放军北部战区总医院消

化内科），杨爱明（北京协和医院消化内科），陈幼祥（南昌大学第一

附属医院消化内科），陈明锴（武汉大学人民医院消化内科），唐涌

进（中华消化内镜杂志编辑部），常莹（武汉大学中南医院消化内

科），蔺蓉（华中科技大学同济医学院附属协和医院消化内科）

执笔者：蔺蓉（华中科技大学同济医学院附属协和医院消化内

科），杨卓（中国人民解放军北部战区总医院消化内科）

利益冲突 所有作者声明不存在利益冲突

参 考 文 献

[1] Larghi A, Ibrahim M, Fuccio L, et al. Forward-viewing 
echoendoscope versus standard echoendoscope for endoscopic 
ultrasound-guided tissue acquisition of solid lesions: a 
randomized, multicenter study[J]. Endoscopy, 2019, 51(5):
444-451. DOI: 10.1055/a-0790-8342.

[2] Kida M, Kawaguchi Y, Miyata E, et al. Endoscopic 
ultrasonography diagnosis of subepithelial lesions[J]. Dig 
Endosc, 2017, 29(4):431-443. DOI: 10.1111/den.12854.

[3] Merkow RP, Herrera G, Goldman DA, et al. Endoscopic 
ultrasound as a pretreatment clinical staging tool for gastric 
cancer: association with pathology and outcome[J]. Ann Surg 
Oncol, 2017, 24(12): 3658-3666. DOI: 10.1245/s10434-017- 
6050-9.

[4] Crombag L, Dooms C, Stigt JA, et al. Systematic and combined 
endosonographic staging of lung cancer (SCORE study)[J]. Eur 
Respir J, 2019, 53(2): 1800800 [pii]. DOI: 10.1183/
13993003.00800-2018.

[5] Wani S, Han S, Simon V, et al. Setting minimum standards for 
training in EUS and ERCP: results from a prospective 
multicenter study evaluating learning curves and competence 
among advanced endoscopy trainees[J]. Gastrointest Endosc, 
2019, 89(6):1160-1168.e9. DOI: 10.1016/j.gie.2019.01.030.

[6] García-Rodríguez A, Fernández-Esparrach G, Sendino O, et 
al. State of endoscopic ultrasonography in Spain in 2017[J]. 
Gastroenterol Hepatol, 2018, 41(10):672-678. DOI: 10.1016/j.
gastrohep.2018.06.009.

[7] Ahmed F, Mehdi K. Barriers to endoscopic ultrasonography 
(EUS) in South and South East Asia[J]. Gastroenterol 
Pancreatol Liver Disord, 2015, 2(1): 1-3.

[8] Nguyen D. JSP-3 current situation of GI endoscopy practice in 
Vietnam[J]. Gastroenterol Endosc, 2020, 62(Suppl 1): 1038.

[9] Xin L, Gao Y, Wang TJ, et al. EUS development in China: 
results from national surveys in 2013 and 2020[J]. Endosc 
Ultrasound, 2023, 12(1):90-95. DOI: 10.4103/EUS-D-22-00003.

[10] Le Berre C, Sandborn WJ, Aridhi S, et al. Application of 
artificial intelligence to gastroenterology and hepatology[J]. 
Gastroenterology, 2020, 158(1): 76-94. e2. DOI: 10.1053/j.
gastro.2019.08.058.

[11] Haug CJ, Drazen JM. Artificial intelligence and machine 
learning in clinical medicine, 2023[J]. N Engl J Med, 2023, 
388(13): 1201-1208. DOI: 10.1056/NEJMra2302038.

[12] 陈耀龙, 杨克虎, 王小钦, 等 . 中国制订/修订临床诊疗指南

的指导原则 (2022 版) [J]. 中华医学杂志 , 2022, 102(10):
697-703. DOI: 10.3760/cma.j.cn112137-20211228-02911.

[13] Qaseem A, Snow V, Owens DK, et al. The development of 
clinical practice guidelines and guidance statements of the 
American College of Physicians: summary of methods[J]. Ann 
Intern Med, 2010, 153(3): 194-199. DOI: 10.7326/0003-4 
819-153-3-201008030-00010.

[14] Gilbert C, Yarmus L, Feller-Kopman D. Use of endobronchial 
ultrasound and endoscopic ultrasound to stage the mediastinum 
in early-stage lung cancer[J]. J Natl Compr Canc Netw, 2012, 
10(10): 1277-1282. DOI: 10.6004/jnccn.2012.0131.

[15] Annema JT, Bohoslavsky R, Burgers S, et al. Implementation 
of endoscopic ultrasound for lung cancer staging[J]. 
Gastrointest Endosc, 2010, 71(1):64-70, 70.e1. DOI: 10.1016/
j.gie.2009.07.027.

[16] Meeralam Y, Al-Shammari K, Yaghoobi M. Diagnostic 
accuracy of EUS compared with MRCP in detecting 
choledocholithiasis: a meta-analysis of diagnostic test 
accuracy in head-to-head studies[J]. Gastrointest Endosc, 
2017, 86(6):986-993. DOI: 10.1016/j.gie.2017.06.009.

[17] Giljaca V, Gurusamy KS, Takwoingi Y, et al. Endoscopic 
ultrasound versus magnetic resonance cholangiopancreatography 
for common bile duct stones[J]. Cochrane Database Syst Rev, 
2015, 2015(2): CD011549. DOI: 10.1002/14651858.CD011549.

[18] Harinck F, Konings IC, Kluijt I, et al. A multicentre 
comparative prospective blinded analysis of EUS and MRI for 
screening of pancreatic cancer in high-risk individuals[J]. Gut, 
2016, 65(9):1505-1513. DOI: 10.1136/gutjnl-2014-308008.

[19] Wani S, Wallace MB, Cohen J, et al. Quality indicators for 
EUS[J]. Am J Gastroenterol, 2015, 110(1): 102-113. DOI: 
10.1038/ajg.2014.387.

[20] Wani S, Keswani RN, Petersen B, et al. Training in EUS and 
ERCP: standardizing methods to assess competence[J]. 
Gastrointest Endosc, 2018, 87(6): 1371-1382. DOI: 10.1016/j.
gie.2018.02.009.

[21] Wani S, Keswani RN, Han S, et al. Competence in endoscopic 
ultrasound and endoscopic retrograde cholangiopancreatography, 
from training through independent practice[J]. Gastroenterology, 
2018, 155(5): 1483-1494. e7. DOI: 10.1053/j. gastro. 2018. 
07.024.

[22] Committee EFS, Yamao K, Irisawa A, et al. Standard imaging 
techniques of endoscopic ultrasound-guided fine-needle 
aspiration using a curved linear array echoendoscope[J]. 
Digestive Endoscopy, 2007, 19(suppl 1): S180-205. DOI:
10.1111/j.1443-1661.2007.00742.x.

[23] Yao L, Zhang C, Xu B, et al. A deep learning-based system for 
mediastinum station localization in linear EUS (with video)[J]. 
Endosc Ultrasound, 2023, 12(5): 417-423. DOI: 10.1097/
eus.0000000000000011.

[24] Yao L, Zhang J, Liu J, et al. A deep learning-based system for 

—— 100



fmx_T3RoZXJNaXJyb3Jz

中华消化内镜杂志 2025 年2 月第 42 卷第 2 期　Chin J Dig Endosc, February 2025, Vol. 42, No. 2

bile duct annotation and station recognition in linear 
endoscopic ultrasound[J]. EBioMedicine, 2021, 65: 103238. 
DOI: 10.1016/j.ebiom.2021.103238.

[25] 黄丽, 张军, 吴慧玲, 等 . 基于深度学习的内镜超声胆管扫

查辅助分站系统构建[J]. 中华消化内镜杂志, 2022, 39(4):
295-300. DOI: 10.3760/cma.j.cn321463-20210628-00007.

[26] Zhang J, Zhu L, Yao L, et al. Deep learning-based pancreas 
segmentation and station recognition system in EUS: 
development and validation of a useful training tool (with 
video) [J]. Gastrointest Endosc, 2020, 92(4):874-885.e3. DOI: 
10.1016/j.gie.2020.04.071.

[27] Tian S, Shi H, Chen W, et al. Artificial intelligence-based 
diagnosis of standard endoscopic ultrasonography scanning 
sites in the biliopancreatic system: a multicenter retrospective 
study[J]. Int J Surg, 2024, 110(3): 1637-1644. DOI: 10.1097/
JS9.0000000000000995.

[28] Wu HL, Yao LW, Shi HY, et al. Validation of a real-time 
biliopancreatic endoscopic ultrasonography analytical device 
in China: a prospective, single-centre, randomised, controlled 
trial[J]. Lancet Digit Health, 2023, 5(11): e812-820. DOI: 
10.1016/S2589-7500(23)00160-7.

[29] 卢姿桦, 吴慧玲, 姚理文, 等 . 基于深度学习的超声内镜分

站和胰腺分割识别系统 [J]. 中华消化内镜杂志 , 2021, 
38(10): 778-782. DOI: 10.3760/cma. j. cn321463-20200325 
-00245.

[30] Coe TM, Fero KE, Fanta PT, et al. Population-based 
epidemiology and mortality of small malignant gastrointestinal 
stromal tumors in the USA[J]. J Gastrointest Surg, 2016, 20(6):
1132-1140. DOI: 10.1007/s11605-016-3134-y.

[31] Zhang J, Huang K, Ding S, et al. Clinical applicability of 
various treatment approaches for upper gastrointestinal 
submucosal tumors[J]. Gastroenterol Res Pract, 2016, 2016:
9430652. DOI: 10.1155/2016/9430652.

[32] Białek A, Wiechowska-Kozłowska A, Pertkiewicz J, et al. 
Endoscopic submucosal dissection for treatment of gastric 
subepithelial tumors (with video) [J]. Gastrointest Endosc, 
2012, 75(2): 276-286. DOI: 10.1016/j.gie.2011.08.029.

[33] Jung JI, Kim GH, I H, et al. Clinicopathologic factors 
influencing the accuracy of EUS for superficial esophageal 
carcinoma[J]. World J Gastroenterol, 2014, 20(20): 
6322-6328. DOI: 10.3748/wjg.v20.i20.6322.

[34] Li X, Zhang C, Yao L, et al. A deep learning-based system to 
identify originating mural layer of upper gastrointestinal 
submucosal tumors under EUS[J]. Endosc Ultrasound, 2023, 
12(6):465-471. DOI: 10.1097/eus.0000000000000029.

[35] Dong Z, Zhao X, Zheng H, et al. Efficacy of real-time artificial 
intelligence-aid endoscopic ultrasonography diagnostic system in 
discriminating gastrointestinal stromal tumors and leiomyomas: a 
multicenter diagnostic study[J]. EClinicalMedicine, 2024, 73:
102656. DOI: 10.1016/j.eclinm.2024.102656.

[36] Miettinen M, Sobin LH, Lasota J. Gastrointestinal stromal tumors 
of the stomach: a clinicopathologic, immunohistochemical, and 
molecular genetic study of 1765 cases with long-term follow-up
[J]. Am J Surg Pathol, 2005, 29(1): 52-68. DOI: 10.1097/01.
pas.0000146010.92933.de.

[37] Faulx AL, Kothari S, Acosta RD, et al. The role of endoscopy 
in subepithelial lesions of the GI tract[J]. Gastrointest Endosc, 
2017, 85(6): 1117-1132. DOI: 10.1016/j.gie.2017.02.022.

[38] Karaca C, Turner BG, Cizginer S, et al. Accuracy of EUS in 
the evaluation of small gastric subepithelial lesions[J]. 
Gastrointest Endosc, 2010, 71(4): 722-727. DOI: 10.1016/j.

gie.2009.10.019.
[39] Hwang JH, Saunders MD, Rulyak SJ, et al. A prospective 

study comparing endoscopy and EUS in the evaluation of GI 
subepithelial masses[J]. Gastrointest Endosc, 2005, 62(2):
202-208. DOI: 10.1016/s0016-5107(05)01567-1.

[40] de Moura D, McCarty TR, Jirapinyo P, et al. EUS-guided 
fine-needle biopsy sampling versus FNA in the diagnosis of 
subepithelial lesions: a large multicenter study[J]. Gastrointest 
Endosc, 2020, 92(1): 108-119. e3. DOI: 10.1016/j. gie. 2020. 
02.021.

[41] Osoegawa T, Minoda Y, Ihara E, et al. Mucosal 
incision-assisted biopsy versus endoscopic ultrasound-guided 
fine-needle aspiration with a rapid on-site evaluation for 
gastric subepithelial lesions: a randomized cross-over study[J]. 
Dig Endosc, 2019, 31(4): 413-421. DOI: 10.1111/den.13367.

[42] Hirai K, Kuwahara T, Furukawa K, et al. Artificial intelligence- 
based diagnosis of upper gastrointestinal subepithelial lesions on 
endoscopic ultrasonography images[J]. Gastric Cancer, 2022, 
25(2):382-391. DOI: 10.1007/s10120-021-01261-x.

[43] Oh CK, Kim T, Cho YK, et al. Convolutional neural 
network-based object detection model to identify 
gastrointestinal stromal tumors in endoscopic ultrasound 
images[J]. J Gastroenterol Hepatol, 2021, 36(12): 3387-3394. 
DOI: 10.1111/jgh.15653.

[44] Minoda Y, Ihara E, Komori K, et al. Efficacy of endoscopic 
ultrasound with artificial intelligence for the diagnosis of 
gastrointestinal stromal tumors[J]. J Gastroenterol, 2020, 
55(12):1119-1126. DOI: 10.1007/s00535-020-01725-4.

[45] Kim YH, Kim GH, Kim KB, et al. Application of a 
convolutional neural network in the diagnosis of gastric 
mesenchymal tumors on endoscopic ultrasonography images
[J]. J Clin Med, 2020, 9(10):3162. DOI: 10.3390/jcm9103162.

[46] 张晨霞, 李迅, 姚理文, 等 . 基于深度学习的超声内镜下消

化道黏膜下肿物诊断系统[J]. 中华消化杂志 , 2022, 42(7):
464-469. DOI: 10.3760/cma.j.cn311367-20220121-00042.

[47] 郭康丽, 朱建伟, 黄张浩, 等 . 深度学习技术对胃肠道间质

瘤与平滑肌瘤超声内镜图像的鉴别诊断价值[J]. 中华消化

内 镜 杂 志 , 2024, 41(6): 449-454. DOI: 10.3760/cma. j.
cn321463-20231210-00629.

[48] Tanaka H, Kamata K, Ishihara R, et al. Value of artificial 
intelligence with novel tumor tracking technology in the 
diagnosis of gastric submucosal tumors by contrast-enhanced 
harmonic endoscopic ultrasonography[J]. J Gastroenterol 
Hepatol, 2022, 37(5): 841-846. DOI: 10.1111/jgh.15780.

[49] Deprez PH, Moons L, OʼToole D, et al. Endoscopic 
management of subepithelial lesions including neuroendocrine 
neoplasms: European Society of Gastrointestinal Endoscopy 
(ESGE) guideline[J]. Endoscopy, 2022, 54(4): 412-429. DOI: 
10.1055/a-1751-5742.

[50] Joensuu H, Vehtari A, Riihimäki J, et al. Risk of recurrence of 
gastrointestinal stromal tumour after surgery: an analysis of 
pooled population-based cohorts[J]. Lancet Oncol, 2012, 13(3):
265-274. DOI: 10.1016/S1470-2045(11)70299-6.

[51] Lu Y, Chen L, Wu J, et al. Artificial intelligence in 
endoscopic ultrasonography: risk stratification of gastric 
gastrointestinal stromal tumors[J]. Therap Adv Gastroenterol, 
2023, 16: 17562848231177156. DOI: 10.1177/1756284823 
1177156.

[52] Seven G, Silahtaroglu G, Kochan K, et al. Use of artificial 
intelligence in the prediction of malignant potential of gastric 
gastrointestinal stromal tumors[J]. Dig Dis Sci, 2022, 67(1):

—— 101



fmx_T3RoZXJNaXJyb3Jz

中华消化内镜杂志 2025 年2 月第 42 卷第 2 期　Chin J Dig Endosc, February 2025, Vol. 42, No. 2

273-281. DOI: 10.1007/s10620-021-06830-9.
[53] Liu C, Qiao M, Jiang F, et al. TN-USMA Net: Triple 

normalization-based gastrointestinal stromal tumors 
classification on multicenter EUS images with 
ultrasound-specific pretraining and meta attention[J]. Med 
Phys, 2021, 48(11): 7199-7214. DOI: 10.1002/mp.15172.

[54] Japanese Gastric Cancer Association. Japanese gastric cancer 
treatment guidelines 2018 (5th edition) [J]. Gastric Cancer, 
2021, 24(1): 1-21. DOI: 10.1007/s10120-020-01042-y.

[55] Tsujii Y, Kato M, Inoue T, et al. Integrated diagnostic strategy 
for the invasion depth of early gastric cancer by conventional 
endoscopy and EUS[J]. Gastrointest Endosc, 2015, 82(3):
452-459. DOI: 10.1016/j.gie.2015.01.022.

[56] Tsujii Y, Hayashi Y, Ishihara R, et al. Diagnostic value of 
endoscopic ultrasonography for the depth of gastric cancer 
suspected of submucosal invasion: a multicenter prospective 
study[J]. Surg Endosc, 2023, 37(4):3018-3028. DOI: 10.1007/
s00464-022-09778-7.

[57] Uema R, Hayashi Y, Kizu T, et al. A novel artificial 
intelligence-based endoscopic ultrasonography diagnostic 
system for diagnosing the invasion depth of early gastric cancer
[J]. J Gastroenterol, 2024, 59(7): 543-555. DOI: 10.1007/
s00535-024-02102-1.

[58] Choi J, Kim SG, Im JP, et al. Comparison of endoscopic 
ultrasonography and conventional endoscopy for prediction of 
depth of tumor invasion in early gastric cancer[J]. Endoscopy, 
2010, 42(9): 705-713. DOI: 10.1055/s-0030-1255617.

[59] Lee JY, Choi IJ, Kim CG, et al. Therapeutic decision-making 
using endoscopic ultrasonography in endoscopic treatment of 
early gastric cancer[J]. Gut Liver, 2016, 10(1): 42-50. DOI: 
10.5009/gnl14401.

[60] Kim J, Chung H, Kim JL, et al. Hierarchical analysis of factors 
associated with t staging of gastric cancer by endoscopic 
ultrasound[J]. Dig Dis Sci, 2021, 66(2): 612-618. DOI: 
10.1007/s10620-020-06194-6.

[61] Zerboni G, Signoretti M, Crippa S, et al. Systematic review and 
meta-analysis: prevalence of incidentally detected pancreatic 
cystic lesions in asymptomatic individuals[J]. Pancreatology, 
2019, 19(1): 2-9. DOI: 10.1016/j.pan.2018.11.014.

[62] Tanaka M, Fernández-Del Castillo C, Kamisawa T, et al. 
Revisions of international consensus Fukuoka guidelines for 
the management of IPMN of the pancreas[J]. Pancreatology, 
2017, 17(5): 738-753. DOI: 10.1016/j.pan.2017.07.007.

[63] Zhang MM, Yang H, Jin ZD, et al. Differential diagnosis of 
pancreatic cancer from normal tissue with digital imaging 
processing and pattern recognition based on a support vector 
machine of EUS images[J]. Gastrointest Endosc, 2010, 72(5):
978-985. DOI: 10.1016/j.gie.2010.06.042.

[64] Marya NB, Powers PD, Chari ST, et al. Utilisation of artificial 
intelligence for the development of an EUS-convolutional 
neural network model trained to enhance the diagnosis of 
autoimmune pancreatitis[J]. Gut, 2021, 70(7): 1335-1344. 
DOI: 10.1136/gutjnl-2020-322821.

[65] Kuwahara T, Hara K, Mizuno N, et al. Artificial intelligence 
using deep learning analysis of endoscopic ultrasonography 
images for the differential diagnosis of pancreatic masses[J]. 
Endoscopy, 2023, 55(2): 140-149. DOI: 10.1055/a-1873-7920.

[66] Omoto S, Takenaka M, Kitano M, et al. Characterization of 
pancreatic tumors with quantitative perfusion analysis in 
contrast-enhanced harmonic endoscopic ultrasonography[J]. 
Oncology, 2017, 93(Suppl 1):55-60. DOI: 10.1159/000481231.

[67] Mei S, Wang M, Sun L. Contrast-enhanced EUS for 
differential diagnosis of pancreatic masses: a meta-analysis[J]. 
Gastroenterol Res Pract, 2019, 2019: 1670183. DOI: 10.1155/
2019/1670183.

[68] Li Y, Jin H, Liao D, et al. Contrast-enhanced harmonic 
endoscopic ultrasonography for the differential diagnosis of 
pancreatic masses: a systematic review and meta-analysis[J]. 
Mol Clin Oncol, 2019, 11(4): 425-433. DOI: 10.3892/
mco.2019.1908.

[69] Tang A, Tian L, Gao K, et al. Contrast-enhanced harmonic 
endoscopic ultrasound (CH-EUS) MASTER: a novel deep 
learning-based system in pancreatic mass diagnosis[J]. Cancer 
Med, 2023, 12(7): 7962-7973. DOI: 10.1002/cam4.5578.

[70] Tang A, Gong P, Fang N, et al. Endoscopic ultrasound 
diagnosis system based on deep learning in images capture 
and segmentation training of solid pancreatic masses[J]. Med 
Phys, 2023, 50(7): 4197-4205. DOI: 10.1002/mp.16390.

[71] Cui H, Zhao Y, Xiong S, et al. Diagnosing solid lesions in the 
pancreas with multimodal artificial intelligence: a randomized 
crossover trial[J]. JAMA Netw Open, 2024, 7(7): e2422454. 
DOI: 10.1001/jamanetworkopen.2024.22454.

[72] Kuwahara T, Hara K, Mizuno N, et al. Usefulness of deep 
learning analysis for the diagnosis of malignancy in intraductal 
papillary mucinous neoplasms of the pancreas[J]. Clin Transl 
Gastroenterol, 2019, 10(5): 1-8. DOI: 10.14309/
ctg.0000000000000045.

[73] Vilas-Boas F, Ribeiro T, Afonso J, et al. Deep learning for 
automatic differentiation of mucinous versus non-mucinous 
pancreatic cystic lesions: a pilot study[J]. Diagnostics (Basel), 
2022, 12(9): 2041. DOI: 10.3390/diagnostics12092041.

[74] Marya NB, Powers PD, Fujii-Lau L, et al. Application of 
artificial intelligence using a novel EUS-based convolutional 
neural network model to identify and distinguish benign and 
malignant hepatic masses[J]. Gastrointest Endosc, 2021, 93(5):
1121-1130.e1. DOI: 10.1016/j.gie.2020.08.024.

[75] Jang JY, Kim SW, Lee SE, et al. Differential diagnostic and 
staging accuracies of high resolution ultrasonography, 
endoscopic ultrasonography, and multidetector computed 
tomography for gallbladder polypoid lesions and gallbladder 
cancer[J]. Ann Surg, 2009, 250(6): 943-949. DOI: 10.1097/
SLA.0b013e3181b5d5fc.

[76] Jang SI, Kim YJ, Kim EJ, et al. Diagnostic performance of 
endoscopic ultrasound-artificial intelligence using deep 
learning analysis of gallbladder polypoid lesions[J]. J 
Gastroenterol Hepatol, 2021, 36(12): 3548-3555. DOI: 
10.1111/jgh.15673.

[77] Kamata K, Takenaka M, Omoto S, et al. Impact of avascular 
areas, as measured by contrast-enhanced harmonic EUS, on 
the accuracy of FNA for pancreatic adenocarcinoma[J]. 
Gastrointest Endosc, 2018, 87(1): 158-163. DOI: 10.1016/j.
gie.2017.05.052.

[78] Hewitt MJ, McPhail MJ, Possamai L, et al. EUS-guided FNA 
for diagnosis of solid pancreatic neoplasms: a meta-analysis[J]. 
Gastrointest Endosc, 2012, 75(2): 319-331. DOI: 10.1016/j.
gie.2011.08.049.

[79] Matynia AP, Schmidt RL, Barraza G, et al. Impact of rapid 
on-site evaluation on the adequacy of endoscopic-ultrasound 
guided fine-needle aspiration of solid pancreatic lesions: a 
systematic review and meta-analysis[J]. J Gastroenterol 
Hepatol, 2014, 29(4): 697-705. DOI: 10.1111/jgh.12431.

[80] Schmidt RL, Walker BS, Howard K, et al. Rapid on-site 

—— 102



fmx_T3RoZXJNaXJyb3Jz

中华消化内镜杂志 2025 年2 月第 42 卷第 2 期　Chin J Dig Endosc, February 2025, Vol. 42, No. 2

evaluation reduces needle passes in endoscopic 
ultrasound-guided fine-needle aspiration for solid pancreatic 
lesions: a risk-benefit analysis[J]. Dig Dis Sci, 2013, 58(11):
3280-3286. DOI: 10.1007/s10620-013-2750-6.

[81] Lin R, Sheng LP, Han CQ, et al. Application of artificial 
intelligence to digital-rapid on-site cytopathology evaluation 
during endoscopic ultrasound-guided fine needle aspiration: a 
proof-of-concept study[J]. J Gastroenterol Hepatol, 2023, 
38(6): 883-887. DOI: 10.1111/jgh.16073.

[82] Zhang S, Zhou Y, Tang D, et al. A deep learning-based 
segmentation system for rapid onsite cytologic pathology 
evaluation of pancreatic masses: a retrospective, multicenter, 
diagnostic study[J]. EBioMedicine, 2022, 80: 104022. DOI: 
10.1016/j.ebiom.2022.104022.

[83] Zhang T, Feng Y, Zhao Y, et al. SI-ViT: Shuffle 
instance-based Vision Transformer for pancreatic cancer 
ROSE image classification[J]. Comput Methods Programs 
Biomed, 2024, 244: 107969. DOI: 10.1016/j. cmpb. 2023. 
107969.

[84] Zhang T, Feng Y, Zhao Y, et al. MSHT: multi-stage hybrid 
transformer for the ROSE image analysis of pancreatic cancer
[J]. IEEE J Biomed Health Inform, 2023, PP. DOI: 10.1109/
JBHI.2023.3234289.

[85] Bonmati E, Hu Y, Grimwood A, et al. voice-assisted image 
labeling for endoscopic ultrasound classification using neural 
networks[J]. IEEE Trans Med Imaging, 2022, 41(6):

1311-1319. DOI: 10.1109/TMI.2021.3139023.
[86] Zhu C, Hua Y, Zhang M, et al. A multimodal multipath 

artificial intelligence system for diagnosing gastric protruded 
lesions on endoscopy and endoscopic ultrasonography images
[J]. Clin Transl Gastroenterol, 2023, 14(10): e00551. DOI: 
10.14309/ctg.0000000000000551.

[87] Chakraborty S, Tomsett R, Raghavendra R, et al. 
Interpretability of deep learning models: a survey of results[C/
OL]//2017 IEEE SmartWorld, Ubiquitous Intelligence & 
Computing, Advanced & Trusted Computed, Scalable Computing 
& Communications, Cloud & Big Data Computing, Internet of 
People and Smart City Innovation (SmartWorld/SCALCOM/UIC/
ATC/CBDCom/IOP/SCI), 2017: 1-6. [2024-07-22]. https://
ieeexplore.ieee.org/abstract/document/8397411.

[88] Johns E, Mac Aodha O, Brostow GJ. Becoming the expert - 
interactive multi-class machine teaching[C/OL]//Proceedings 
of the IEEE Conference on Computer Vision and Pattern 
Recognition, 2015: 2616-2624.[2024-07-22]. https://openaccess.
thecvf. com/content_cvpr_2015/html/Johns_Becoming_the_
Expert_2015_CVPR_paper.html.

[89] Nguon LS, Seo K, Lim JH, et al. Deep learning-based 
differentiation between mucinous cystic neoplasm and serous 
cystic neoplasm in the pancreas using endoscopic 
ultrasonography[J]. Diagnostics (Basel), 2021, 11(6): 1052. 
DOI: 10.3390/diagnostics11061052.

•插页目次 •
富士胶片（中国）投资有限公司 封2
宾得医疗器械（上海）有限公司 对中文目次

深圳市康哲药业有限公司 对英文目次 1
上海澳华内镜股份有限公司 对英文目次 2
深圳开立生物医疗科技股份有限公司 对正文

江苏唯德康医疗科技有限公司 108a

济川药业集团有限公司 108b
河北武罗药业有限公司 114a
四川健能制药开发有限公司 114b
南微医学科技股份有限公司 封3
奥林巴斯（北京）销售服务有限公司 封4

—— 103


